Handheld electromagnet carrier for transfer of hyperpolarized carbon-13 samples.

نویسندگان

  • Hong Shang
  • Timothy Skloss
  • Cornelius von Morze
  • Lucas Carvajal
  • Mark Van Criekinge
  • Eugene Milshteyn
  • Peder E Z Larson
  • Ralph E Hurd
  • Daniel B Vigneron
چکیده

PURPOSE Hyperpolarization of carbon-13 ((13) C) nuclei by dissolution dynamic nuclear polarization increases signal-to-noise ratio (SNR) by >10,000-fold for metabolic imaging, but care must be taken when transferring hyperpolarized (HP) samples from polarizer to MR scanner. Some (13) C substrates relax rapidly in low ambient magnetic fields. A handheld electromagnet carrier was designed and constructed to preserve polarization by maintaining a sufficient field during sample transfer. METHODS The device was constructed with a solenoidal electromagnet, powered by a nonmagnetic battery, holding the HP sample during transfer. A specially designed switch automated deactivation of the field once transfer was complete. Phantom and rat experiments were performed to compare MR signal enhancement with or without the device for HP [(13) C]urea and [1-(13) C]pyruvate. RESULTS The magnetic field generated by this device was tested to be >50 G over a 6-cm central section. In phantom and rat experiments, [(13) C]urea transported via the device showed SNR improvement by a factor of 1.8-1.9 over samples transferred through the background field. CONCLUSION A device was designed and built to provide a suitably high yet safe magnetic field to preserve hyperpolarization during sample transfer. Comparative testing demonstrated SNR improvements of approximately two-fold for [(13) C]urea while maintaining SNR for [1-(13) C]pyruvate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic 1H imaging of hyperpolarized [1‐13C]lactate in vivo using a reverse INEPT experiment

PURPOSE Dynamic magnetic resonance spectroscopic imaging of hyperpolarized 13 C-labeled cell substrates has enabled the investigation of tissue metabolism in vivo. Currently observation of these hyperpolarized substrates is limited mainly to 13 C detection. We describe here an imaging pulse sequence that enables proton observation by using polarization transfer from the hyperpolarized 13 C nucl...

متن کامل

Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism.

Hyperpolarization is the general term for a method of enhancing the spin-polarization difference of populations of nuclei in a magnetic field. No less than 5 distinct techniques (dynamic nuclear polarization [DNP]; parahydrogen-induced polarization-parahydrogen and synthesis allow dramatically enhanced nuclear alignment [PHIP-PASADENA]; xenon/helium polarization transfer; Brute Force; (1)H hype...

متن کامل

Ab Initio Studies: effect of various substituted on structural parameters and charge transfer energy of the Nafazolin drug and its nano carrier on fullerene

A fullerene is any molecule composed entirely of carbon, in the form of a hollow sphere.Naphazoline is a sympathomimetic agent with marked alpha adrenergic activity. It is a vasoconstrictor with a rapid action in reducing swelling when applied to mucous membrane. It acts on alpha-receptors in the arterioles of the conjunctiva to produce constriction, resulting in decreased congestion. It is an ...

متن کامل

High-Resolution Low-Field Molecular Magnetic Resonance Imaging of Hyperpolarized Liquids

We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (large...

متن کامل

A magnetic tunnel to shelter hyperpolarized fluids.

To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized (1)H and (13)C nuclei in a variety of molecules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 75 2  شماره 

صفحات  -

تاریخ انتشار 2016